

IDUG 2007 North America AUTOMATIC Summary –	3 //
db2 "connect to DBNAME"	
db2 "get db cfg for DBNAME show detail" gr "AUTOMATIC SELF_TUNING_MEM DATAB, OCKLIST MAXLOCKS PCKCACHESZ SH R SORTHEAP";db2 "select substr(bpname bpname, npages from syscat.bufferpools"	ASE_MEMORY L IEAPTHRES_SH
If NPAGES = -2, then automatic memory for t enabled.	that pool is
© 2007 Database-Brothers, Inc.: Reprinted with permission by IDLD.	GoFurther

IDUG^{*}2007 North America

Autoconfigure

- Enabled by default for new databases
 - "2 second tuning" better than none / defaults
- Caution Auto Configure is not multiple instance aware
 - Assumes host is purely database server with one instance
- Addresses many, but not all, inadequate default values
 - · Locktimeout still -1 (unlimited)
 - MAXFILOP 64
 - LOGBUFSZ should be at least 128

© 2007 Database Brothers, Inc. Reprinted with permission by IDUG.

GoFurther

IDUG*2007 North America

NUM_IOCLEANERS

- · Automatic by default
 - · Cannot be changed online
- Based on number of CPUs and partitions
- While better than the V8 default value of "1", beware of aggressive page cleaning causing spikes in transaction elapsed times.
 - Formula "(#CPUs / #Partitions) 1" may be better, but not less than 1.

© 2007 Database-Brothers, Inc. Reprinted with permission by IDUG.

GoFurther

IDUG^{*}2007 North America

NUM IOSERVERS

- · Automatic by default
 - Much better than V8 default value of 3
 - · Cannot be changed online
 - Benefits Prefetching Appropriate for data warehouse but not OLTP!
- Calculated based on parallelism settings of all tablespaces
 - May be too aggressive
 - 1,000 tablespaces with 3X parallelism across 60 spindles = 3,000 IOSERVERS?
 - And default MAXFILOP is 64?
 - Try # spindles + 10% as alternate for DW, -50% if OLTP
 - Monitor Time Waited on Prefetch
 - Monitor Asynchronous Pages Read per Request (APPR)

2007 Database Brothers, Inc. Received with permission by IDUG.

IDUG* 2007 North America

Attendee Notes - Asynchronous Pages read Per Request (APPR)

- Compute for Database, Bufferpools, and Tablespaces
- APPR = (Asynchronous pool data page reads + Asynchronous pool index page reads) / (Asynchronous data read requests + Asynchronous index read requests)
 - Your Value? _____
- Measure of Prefetch Efficiency, generally should be greater than 10, preferably higher.

© 2007 Database-Brothers, Inc. Reprinted with permission by IDUG.

10

IDUG 2007 North America

Autonomic Memory Tuning – STMM (Self Tuning Memory Manager)

- DB2's scheme for dynamically adjusting memory between:
 - 1. Locklist & Maxlocks
 - 2. Package Cache (pckcachesz)
 - 3. Sortheap & sheapthresh_shr
 - 4. Bufferpools
- At least 2 of the 4 memory resources above must be set to automatic --- DB2 robs from Peter to pay Paul

© 2007 Database-Brothers, Inc. Reprinted with permission by IDUG.

11

IDUG 2007 North America

STMM -Considerations & Recommendations for OLTP

- OLTP (Transactional Databases)
 - Start with LOCKLIST & PCKCACHESZ automatic
 - Ensure that physical design (indexes, MQTs, MDC) is optimized and free of defects
 - Use multiple bufferpools to separate random (synchronous) I/O from sequential (asynchronous prefetch) I/O.
 - Investigate, and cure if possible, causes of sequential I/O
 - CATLGBP, TEMPSPCBP, USERSYNCBP, USERASYNCBP
 - Enable AUTOMATIC for SORT and Bufferpools to achieve optimum "fine tuning", then lock down sizes.
 - Monitor Carefully: TX Rates & Elapsed times, CPU Busy, changes in I/O behavior (Sync, Async, Times)
 If you thought dynamic SQL introduced unpredictability to
 - If you thought dynamic SQL introduced unpredictability to your environment, what will STMM do?

© 2007 Database-Brothers, Inc. Reprinted with permission by IDUG.

IDUG*2007 North America

STMM -Considerations & Recommendations for DW

- Data Warehouse Databases
 - Start with LOCKLIST, PCKCACHESZ, SORT and Bufferpool all automatic
 - Optimize physical design (indexes, MQTs, MDC)
 - Use one large bufferpool
 - Possibly use 2nd bufferpool for "hot" lookup tables
 - IBMDEFAULTBP and HOTBP
 - Monitor Carefully: Query Throughput & Elapsed times, CPU Busy, changes in I/O behavior (Sync, Async, APPR, Read/Write Times)

© 2007 Database-Brothers, Inc. Reprinted with permission by IDUG.

...

Golurther

DLIG[®] 2007 North America

STMM -Considerations & Recommendations for DPF

- Data Warehouse Databases DPF
 - The bufferpool(s) must not have any entries in sysibm.sysbufferpoolnodes
 - One partition is the tuning "king" and dictates tuning for all partitions.
 - db2 "call sysproc.admin_cmd ('get stmm tuning dbpartitionnum')" [Returns Current Ruling Partition]
 - db2 "call sysproc.admin_cmd ('update stmm tuning dbpartitionnum N') [Changes Ruling Partition to "N"]
 - Use ACTIVATE DATABASE command all partitions must be active for STMM

© 2007 Database-Brothers, Inc. Reprinted with permission by IDUG.

1

IDUG^{*}2007 North America

STMM – Implementation Details

- DATABASE_MEMORY is AUTOMATIC by default on Windows and AIX, COMPUTED for Linux, Sun, HP
- db2 update db cfg for DBNAME using self_tuning_mem ON (Use OFF to lock current values)
- db2 update db cfg for DBNAME using LOCKLIST AUTOMATIC
- db2 update db cfg for DBNAME using MAXLOCKS AUTOMATIC
- db2 update db cfg for DBNAME using PCKCACHESZ AUTOMATIC
- db2 update db cfg for DBNAME using SORTHEAP AUTOMATIC SHEAPTHRES_SHR AUTOMATIC
- db2 alter bufferpool IBMDEFAULTBP size AUTOMATIC
- "MANUAL" locks in current sizes and disables automation for that component – Alternatively, Integer values disable automatic tuning and will cause change to the specified value

© 2007 Database-Brothers, Inc. Reprinted with permission by IDUG.

STMM - Monitoring • db2 "get db cfg for DBNAME show detail" • Shows current and pending sizes • db2 "get snapshot for database on DBNAME" • Shows current, configured, and high water mark memory heap sizes • db2 "get snapshot for bufferpools on DBNAME" • Node number • Node number • Tablespaces using bufferpool • Alter bufferpool information: • Pages left to remove • Current size • Post-alter size • Post-alter size • Be sure to try the new SYSIBMADM.SNAP* administrative views

IDUG^{*}2007 North America

Taming the Autonomic Beast

- Configuration Changes, 10-15% Improvement
- Physical Design Changes, 85-90% Improvement
- · Administrative Tasks
 - Online REORG
 - · Monitoring and Testing Backups
 - HADR
 - Recovery Testing
 - LBAC Configuration
 - Auditing
 - Security Administration
 - Performance Monitoring and Locking Diagnosis
 - Table Compression Analysis & Implementation

May 6-10.2007
Sen Jose Convention Center
Sen Jose, Dalforia, USA

Configuration Changes

North America

Autoconfigure is a good start...
... let's explore some more necessary changes.

IDUG*2007 North America

Let's Get Busy - Configuration Changes

- db2 "update db cfg for DBNAME using MAXFILOP 512", then monitor DB Snap to ensure Database Files Closed = 0. Changes online at TX boundary.
- 2. Catalog Cache Size not an Automatic participant, but can be changed online
 - Monitor Catalog Cache Hit Ratio (from DB Snap) and increase CATALOGCACHE_SZ until CATHR > 95%
 - CATHR = 100 ((Catalog cache inserts * 100) / Catalog cache lookups)
- 3. Verify appropriate value for NUM_IOSERVERS
 - DW #Spindles + 10%
 - OLTP #Spindles 50%

© 2007 Database-Brothers, Inc. Reprinted with permission by IDUG.

GnFurther

NUM_IOCLEANERS + CHNGPGS_THRESH: Asynchronous Write Percentage (AWP) • Compute for Database, Bufferpools, and Tablespaces • AWP = (((Asynchronous pool data page writes + Asynchronous pool index page writes) * 100) / (Buffer pool data writes + Buffer pool index writes)) • Your Value? ______ (use DB Snap) • Should be > 90%, else need to increase num_iocleaners (up to #CPUs - 1) and/or lower CHNGPGS_THRESH by 5% decrements

Configuration Changes: LOGBUFSZ Online=no AT=no Buffers read & write I/O to log files Default size 8 is grossly too small for most of today's databases, autoconfigure will "tune" Set it to 256-512, higher if you do lots of Rollbacks or have high DML activity Must be less than DBHEAP size LGRHR (Log Read Hit Ratio) = 100 - ((Number read log IOs * 100) / Log pages read) Your value? ______ (use DB SNAP) If LGRHR < 98%, increase LOGBUFSZ further

May 6-10, 2007 San Jose Convention Center San Jose, California, USA		
IDUG*2007	Physical Design Chan	ges
North America	Memory Tuning will be an exercise futility if the physical design does n support the workload. Memory she games will only mask real performa problems	
2	6-2007 Chindraw Boothers, Inc. Reported with permission by ICUG.	Further

IDUG° 2007 North Ameri

Workload Analysis > **Well Stated Opportunity**

- 80+% of Tuning Benefit comes from complete and accurate understanding of the SQL workload and
- · What is the most costly, most harmful, SQL during peak periods? Recent periods? Over time?
 - Highest CPU Consumption
 - · Highest Sort Time Consumption
 - · Highest average Elapsed times
 - Highest Read I/O (rows read)
- Grouping & Cost Aggregation of similarly structured SQL statements is imperative to "True Cost" determination

IDLIG²2007 North America **SQL Equalization & Cost** Aggregation

US Patent # 6,772,411

Select c1, c2, c4 from tbl where c5 = '0360' cpu=.1 100's of SQL statements per second...
SQL Snapshot shows 19 different statements!
WRONG ANSWER!
How the DBA needs to see the SQL Workload:

 How the DBA needs to see the SQL Workload: 							
SQL Statement	Count	TotCPU	CPU%				
Select c1, c2, c4 from tbl where c5 = '?'	16	1.6	66.6				
Select c1, c2, c4 from tbl where c5 > '?'	2	.6	25.0				
Select c1, c2, c4 from tbl where c8 = '?'	1	.2	8.33				
Totals:	19	2.4	100.00				

IDUG*2007 North Americ

Solving Problems > Effective Solutions

- Given a costly SQL statement, 3 possible solutions:
- 1) Physical Design Change (95%)
 - Add an Index
 - -Add/modify Cluster Index
 - •Most potent weapon against poor application performance
 - Drop Ineffective/Costly Indexes
 - Low Cardinality, Skewed Distributions, Redundant Indexes
 - Generated Columns with new supporting Index
 - MQT/AST/MDC tables
- 2) Tweak Catalog Statistics to "fool" optimizer (2%)
- A temporary and difficult to maintain "solution"
- 3) Re-write/modify SQL (3%)
 - The DB2 Optimizer Re-writes SQL. Isn't re-writing re-written SQL redundant?

IDUG[®] 2007 North America

Hidden Physical Design Costs – **obfuscated** by well tuned memory

- A simple SELECT executed with high frequency against a table with only 32 rows consumed 34% of ALL CPU time on an SMP 4-way
- Myth: Small tables don't need indexes
- · Realities:
 - Explains don't identify costly SQL against small tables
 - Explains don't consider frequency of execution
 - · Only Dynamic SQL Equalization finds high cost SQL
 - · Even ONE row tables can benefit from indexes

C 2007 Database Benthers Inc. Rendered with nemission by IDLIS

20

IDUG[®] 2007 North America

Which tables have highest Rows Read?

- db2 "select tabname, rows_read from sysibmadm.snaptab order by rows_read desc fetch first 10 rows only"
- Two Possibilities:
 - 1. The data is very popular!
 - Consider placing the table in its own tablespace on best performing disks. Can also assign tablespace to its own bufferoool.
 - 2. Expensive TBSCANs are occurring against the table
 - Use SQL Equalization to identify SQL
 - Use IBM Design Advisor for Physical Design solutions (Indexes, MDC, MQT, partitioning)

Heads Up: The Design Advisor does NOT recommend XML Indexes

© 2007 Database-Brothers, Inc. Reprinted with permission by IDUG.

29

IDUG[®] 2007 North America

Which Tables have highest rows written? What indexes are defined?

- db2 "get snapshot for tables on DBNAME"
- db2 "select tabname, rows_written from sysibmadm.snaptab order by rows_written desc fetch first 10 rows only"
- Back at your office, carefully review all indexes on these Top 10 tables to ensure they conform to best practices guidelines (coming up)
- You can query 'SYSCAT.INDEXES', use the command "db2 describe indexes for table schema.tablename show detail", or use a GUI (like Control Centre)

© 2007 Database-Brothers, Inc. Reprinted with permission by IDUG

IDUG*2007 North America

Index Design Guidelines

- Indexes with Cardinality = 1 are a performance death sentence. Do not create indexes "just in case"...
- Indexes with Skewed distributions are expensive to maintain on Insert, Update, Delete
- Redundant Indexes are expensive to maintain, consume disk, and provide no value to DB2 – Drop them!
 - IX on C1, C2 <<- Redundant Index
- IX on C1, C2, C4
- Use composite indexes to replace single column indexes
- For multi-column indexes, place the column that is most frequently known (= predicate) first.
- Use Clustering Indexes to reduce Sort & CPU costs

C 2007 Database Senthers Inc. Rendrated with nemission by IDLIG

IDUG°20		

Composite Indexes Accelerate Your Business

- "SELECT * from TB where C1 = ? And C2 = ? And C3 >= ?" caused an SLA to be missed and service contracts nearly lost
- Myth: Use 3 single column indexes on C1, C2, and C3 individually
- Realities:
 - Index AND-ing can be CPU and I/O expensive
 - A single composite index on columns C1, C2, & C3 is dramatically faster and more efficient
 - The INDEX/Design Advisor favors composite indexes, but identifying the costly SQL is the trick >> SQL EQ!

© 2007 Database-Brothers, Inc. Reprinted with permission by IDUG.

32

IDUG[®] 2007 North America

Which Tablespaces have the slowest Read and Write times (ORMS, OWMS)?

- Ensure tablespace best practices implemented
 - Multiple containers
 - Equal Size
 - Different Devices/Paths
 - PREFETCHSIZE is 3-4X EXTENTSIZE
 - Containers not on OS Paging disks or other very busy spindles
 - RAID storage has "db2set DB2_PARALLEL_IO=* (or tsid list)" enabled
 - DMS Storage can be 5-10% faster, but more difficult to administrate
 - · Use Automatic Storage with multiple paths

© 2007 Database-Brothers, Inc. Reprinted with permission by IDUG.

-			
-			
	_	_	

IDUG^{*}2007 North America

Attendee Notes - ORMS

- · ORMS for the Database Overall:
 - db2 "select (POOL_READ_TIME / (POOL_DATA_P_READS + POOL_INDEX_P_READS + 1) as ORMS from sysibmadm.snapdb where db_name = 'DRNAMF''
- ORMS for the top 10 (read) slowest tablespaces:
 - db2 "select tbsp_name, (POOL_READ_TIME / (POOL_DATA_P_READS + POOL_INDEX_P_READS + 1) as ORMS from sysibmadm.snaptbsp order by ORMS desc fetch first 10 rows only"
- How do the top 10 TS compare to the database average?

© 2007 Database Brothers, Inc. Reprinted with permission by IDUG.

24

GnFurther

IDUG* 2007 North America

Attendee Notes - OWMS

- · OWMS for the Database Overall:
 - db2 "select (POOL_WRITE_TIME / (POOL_DATA_WRITES + POOL_INDEX_WRITES + 1) as OWMS from sysibmadm.snapdb where db_name = 'DBNAME''
- OWMS for the top 10 (write) slowest tablespaces:
 - db2 "select tbsp_name, (POOL_WRITE_TIME / (POOL_DATA_WRITES + POOL_INDEX_WRITES + 1) as OWMS from sysibmadm.snaptbsp order by OWMS desc fetch first 10 rows only"
- How do the top 10 TS compare to the database average?

© 2007 Database-Brothers, Inc. Reprinted with permission by IDUG.

35

GoFurther

IDUG* 2007 North America

Which Tablespaces are Synchronously Read? Asynchronously Read?

- Tablespaces that are highly Synchronously Read contain tables with good indexes that support queries and avoid costly scans. These tablespaces should be placed into a USERSYNCBP Bufferpool.
- Tablespaces with significant Asynchronous reads have tables that are being prefetched – An indexing opportunity may or may not exist. Place these tablespaces into a USERASYNCBP Bufferpool. This bufferpool should be large enough to facilitate effective prefetching (APPR), with memory preference given to USERSYNCBP.

© 2007 Database-Brothers, Inc. Reprinted with permission by IDUG

IDUG® 2007 North Amer

Attendee Notes - Sync Read Percent (SRP)

- For the Database:
 - select 100 (((pool_async_data_reads + pool_async_index_reads) * 100) / (pool_data_p_reads + pool_index_p_reads + 1)) as SRP from sysibmadm.snapdb where DB_NAME = 'DBNAME'
- For Tablespaces:
 - select tbsp_name, 100 (((pool_async_data_reads + pool_async_index_reads) * 100) / (pool_data_p_reads + pool_index_p_reads + 1)) as TSSRP from sysibmadm.snaptbsp order by TSSRP desc
 - · Lists tablespaces from most randomly (Synchronously) read to least. SRP should be 70%+ to participate in USERSYNCBP.

IDUG*2007 North America

When to REORG online (INPLACE)?

- When Table (Overflows * 100 / Rows_Read) > 3% and "significant activity" is present
- db2 "select 'REORG TABLE ' || TABSCHEMA || '.' || TABNAME || 'INPLACE ALLOW WRITE ACCESS;' from sysibmadm.snaptab where (ROWS_READ > 999) AND (((OVERFLOW_ACCESSES * 100) / $(ROWS_READ + 1) > 3)$ "
- · Reorgchk? Maybe once or twice a year.
- Remember to REORG indexes after table REORG completes

May 6-10, 2007 San Jose Correction Center San Jose, California, USA			78
IDUG*2007	In Summary		
North America	DB2 9 helps automation tuning you still have a job to	. but –	
2 SHIPMENS	© 2007 Database Brothers, Inc. Reprinted with permission by ICUG.	— GoFu	ırther

IDUG 2007 North Americ When is your tuning job done? • OLTP: • Data Warehouse: • Data Warehouse: • Rows Read/TX/TB < 10 • Prefetch is Effective (APPR > 10 DB BP Sync Reads > 90% for each TS) BP, Pkg Cache, & Catlg Cache hit ratios > 95% No Slow TS (ORMS, OWMS) TEMPSPACE defined where data isn't – has 3-6 containers There are no bad apples · No Slow TS (ORMS, • DB BP Sync Reads > 25% OWMS) • Catlg Cache Hit > 95% • No SQL > 10% CPU No Files Closed No SQL > 50% SLA time SQL having Frequency>1 uses No SQL w/ Rows Read/Rows Fetched > 100 • MQTs / ASTs MDC tables Effective Indexes No Files Closed No Lock or Token Waits Phone Rage Ends Phone Rage Ends

IDUG 2007 North America	7/1/57 //
Session: I05, H12 Accelerate Your DB2 Business	Thank you
On Demand Autonomically!	for attending!
Scott H	
DB Scott.Hayes@Datab	•
MINISTERIA AND AND AND AND AND AND AND AND AND AN	GoFurther